Spatial Variation of Sea-Level Sea level reconstruction

Biao Chang

Multimedia Environmental Simulation Laboratory School of Civil and Environmental Engineering Georgia Institute of Technology

Advisor: Dr. Mustafa M. Aral

April 8, 2013

Multimedia Environmental Simulation Laboratory (MESL)

Problem definition

Recap of last presentation

- **Fuzzy C-Means**
- Non-spherical shapes in the attribute domain
- Spatial contiguity in the geographic domain
- Mean silhoutte value \rightarrow number of clusters

Subsequent work

- Semi-empirical modeling
- Definition of "empirical":

adj. based on, concerned with, or verifiable by observation or experience rather than theory or pure logic (http://oxforddictionaries.com/us/definition/american english/empirical)

Observation shortage

- Temporal coverage of spatial sea level data: 1950 to 2001
- Tide gauge stations (observational data):

β=1000

220 240 260 280 300 320 340

-atitude (•

60 80 100 120 140

160

200 Lonaitude (*)

Cluster 3

Cluster 2

Cluster 1

□ The basic ideas

- Filter out noise
- Capture spatial pattern
- Fill data gaps

Review of previous methods

Originated from Singular Value Decomposition (SVD)

The basic ideas

- Filter out noise
- Capture spatial pattern
- Fill data gaps

Review of previous methods

Originated from Singular Value Decomposition (SVD)

The basic ideas

- Filter out noise
- Capture spatial pattern

Simulation Laboratory (MESL)

Fill data gaps

Review of previous methods

Originated from Singular Value Decomposition (SVD)

Georgia Tech

U'

 $N \times p$

The basic ideas

- Filter out noise
- Capture spatial pattern
- Fill data gaps

Review of previous methods

"Reduced SVD"

$$H_{N\times T} \cong \bigcup_{N\times p} \bigcup_{p\times p} V^{T} \longrightarrow H_{N\times T} \cong \bigcup_{N\times p} A_{p\times T} \longrightarrow h(t) \cong \bigcup_{N\times p} \alpha(t)$$

- Reconstruction: going beyond T
 - At time t', only R observations, data at N-R points need to be reconstructed

$$hr(t') \cong Ur'_{R \times p} \alpha(t')_{p \times 1} \longrightarrow \alpha(t')_{p \times 1} \longrightarrow h(t') \cong U'_{N \times p} \alpha(t')_{p \times 1}$$

• Alternative names in climate studies: empirical orthogonal functions (EOFs), reduced space optimal interpolation (Smith et al., 1996; Kaplan et al., 2000; Church et al., 2004)

Our method of data reconstruction

- Why not "reduced SVD" (Church et al., 2004) ? → different tasks
 - Data gap vs data famine
 - Construction of spatial pattern
 - Uncertainty issue

$$h(t) \cong U'_{N \times p} \alpha(t)_{p \times 1}$$

- Ideas in "reduced SVD" to serve in the development of new methods
 - Certain spatial relationships do not change over time

• Magnitudes of major spatial components can be calibrated during reconstruction

The basic ideas

- Filter out noise
- Capture spatial pattern
- Fill data gaps

Our approach to realize the basic ideas

 \rightarrow

- Filter out noise
- Capture spatial pattern →
- Fill data gaps \rightarrow
- clustering and subsequent spatial averaging within clusters
- artificial neural network (NN)
 - utilizing global mean sea level and spatial SST data

Neural network architecture

Starting from the "black box" perspective

Temporal coverage: 1952-2001

Temporal coverage: 1880-2001

Neural network architecture

- Inside the "black box"
 - Type of neural network: feedforward
 - Neurons: layer and number
 - Within neuron: weight, bias, transfer function
 - Pre- and post- processing

Mathematics of NN

Weights and biases

 $A_1 = TransFcn1(W_1X + B_1)$

Georgia

Tech

□ Training and validating NN

- NN training is first an optimization problem
 - Gradient descent and related
 - Conjugate gradient and related
 - Levenberg-Marquardt algorithm
 - Other

$$\beta_{k+1} = \beta_k - \left[\mathbf{J}_k^{\mathsf{T}} \mathbf{J}_k + \lambda \mathbf{I} \right]^{-1} \mathbf{J}_k^{\mathsf{T}} \left[Y - f\left(\beta_k\right) \right]$$
$$\beta_{k+1} = \beta_k - \left[\mathbf{J}_k^{\mathsf{T}} \mathbf{J}_k + \lambda \operatorname{diag}\left(\mathbf{J}_k^{\mathsf{T}} \mathbf{J}_k \right) \right]^{-1} \mathbf{J}_k^{\mathsf{T}} \left[Y - f\left(\beta_k\right) \right]$$

- Validating NN to improve generalization
 - The best training vs. the best generalization

Best Validation Performance is 0.014651 at epoch 4

□ Training and validation: example

□ Issue 1: local minimum + initial weights/biases

random [-1, 1] initialization

Solution:

Multiple trainings with random initial weights/biases (1000 reps)

□ Issue 2: generalization

Training without validation check

□ Issue 2: generalization

Training without validation check

□ Issue 2: generalization

Training without validation check

□ Issue 2: generalization

Validation dataset used as training data

□ Solution:

Training with validation check (15%)

Impact of region division

Division based on ocean basins

Division based on clustering

□ Impact of SST as input: clustering

Impact of SST as input: ocean basin

H_{global} and 3 SST's as inputs

H_{global} as the only input

□ Final results: clustering

□ Final results: ocean basin

The End Thanks!

